Answer: covariance matrix is
(0.00090 0.00042)
(0.00042 0.00160)
Mean of weekly return = 0.00119
Standard deviation = 0.0279
VaR(0.05) = $1450.73
Explanation:
> S1 = 200*100
> S2 = 100*125
> w1 = S1/(S1+S2)
> w2 = 1 - w1
> w = c(w1,w2)
> means = c(0.001, 0.0015)
> sd = c(0.03, 0.04)
> rho = 0.35
> multiply = w %*%
means> round(mutiply by 5)=0.00119
> cov = matrix(c(sd^2, sd[1]*sd[2]*rho,sd[1]*sd[2]*rho,sd[2]^2),nrow=2) = 0.00090, 0.00042, 0.00042, 0.00160
> sdp = sqrt( w %*% cov %*% w )> round(sdp,4)=0.0279
> VaR = -(S1+S2)*(mup+sdp*qnorm(.05))
=1450.73