Respuesta :
Answer:
[tex]K = 1/K_{1}\times 2K_{2} = 2K_{2}/K_{1}[/tex]
Explanation:
[tex]4Cu{(s)} + O_{2}(gas) \leftrightarrow 2Cu_{2}O_{(s)}[/tex] [tex],K_{1}[/tex] assuming equation (1)
[tex]2CuO_{(s)} \leftrightarrow Cu_{2}O{(s)} + 1/2 O_{2}(gas) ,K_{2}[/tex] assuming equation (2)
upon reverting equation (1) and multiplying equation (2) by 2
[tex]2Cu_{2}O_{(s)} \leftrightarrow 4Cu{(s)} + O_{2}(gas)[/tex] ,[tex],1/K_{1}[/tex] assuming equation (3)
[tex]4CuO_{(s)} \leftrightarrow 2Cu_{2}O{(s)} + O_{2}(gas)[/tex] [tex],2K_{2}[/tex] assuming equation (4)
upon adding equation (3) and (4) , give equation (5)
[tex]4CuO_{(s)} \leftrightarrow 4Cu{(s)} + 2O_{2}(gas)[/tex] [tex]K_{3}=K/2[/tex] , equation (5)
divide equation (5) by 2
[tex]2CuO_{(s)} \leftrightarrow 2Cu{(s)} + O_{2}(gas)[/tex] [tex]K = 1/K_{1}\times 2K_{2}[/tex]
[tex]K = 1/K_{1}\times 2K_{2} = 2K_{2}/K_{1}[/tex]
The equilibrium constant of the target reaction is equivalent to: K = K1/2K2
According to the question;
- The target equation is;
2Cu(s) + O2(g) <--> 2CuO(s)
Given;
- 4Cu(s) + O2(g) <--> 2Cu2O(s), K1.........eqn(1)
- 4Cu(s) + O2(g) <--> 2Cu2O(s), K1.........eqn(1)2CuO(s) <--> Cu2O(s) + 1/2 O2(g), K2......eqn(2)
By observation; to arrive at the target equation;
We must reverse equation (2) and divide equation 1 by 2 so that we have;
- 2Cu(s) + 1/2O2(g) <--> Cu2O(s),
- 2Cu(s) + 1/2O2(g) <--> Cu2O(s), k1/2.........eqn(3)
- 2Cu(s) + 1/2O2(g) <--> Cu2O(s), k1/2.........eqn(3)Cu2O(s) + 1/2 O2(g) <--> 2CuO(s),
- 2Cu(s) + 1/2O2(g) <--> Cu2O(s), k1/2.........eqn(3)Cu2O(s) + 1/2 O2(g) <--> 2CuO(s), 1/K2.....eq4
The aggregate of eqn(3) and (4) therefore becomes;
- 2Cu(s) + 1/2O2(g) + Cu2O(s) + 1/2 O2(g) <--> Cu2O(s) + 2CuO(s)
By eliminating the spectator compound; Cu2O(s); we have;
- 2Cu(s) + O2(g) <--> 2CuO(s)
2Cu(s) + O2(g) <--> 2CuO(s)where; K = k1/2 × 1/K2
2Cu(s) + O2(g) <--> 2CuO(s)where; K = k1/2 × 1/K2K = k1/2k2
Read more about chemical equilibrium:
https://brainly.com/question/3159758