A +5.0-μC point charge is placed at the 0 cm mark of a meter stick and a -4.0-μC charge is placed at the 50 cm mark. What is the net electric field at the 30 cm mark? (k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2)

Respuesta :

Answer:

The net electric field is [tex]1.39\times10^{6}\ V/m[/tex]

Explanation:

Given that,

Charge at 0 mark = +5.0 μC

Charge at 50 mark = -4.0 μC

We need to calculate the electric field at 30 cm mark

Using formula of electric field

[tex]E=\dfrac{kq}{r^2}[/tex]

Where, q = charge

r = distance

Put the value into the formula

[tex]E_{1}=\dfrac{8.99\times10^{9}\times5.0\times10^{-6}}{(30\times10^{-2})^2}[/tex]

[tex]E_{1}=499444.44\ V/m[/tex]

We need to calculate the electric field at 50 cm mark

Using formula of electric field

[tex]E=\dfrac{kq}{r^2}[/tex]

Put the value into the formula

[tex]E_{2}=\dfrac{8.99\times10^{9}\times4.0\times10^{-6}}{(20\times10^{-2})^2}[/tex]

[tex]E_{2}=899000\ V/m[/tex]

We need to calculate the net electric field

Using formula of net electric field

[tex]E=E_{1}+E_{2}[/tex]

Put the value into the formula

[tex]E=499444.44+899000[/tex]

[tex]E=1398444.44\ V/m[/tex]

[tex]E=1.39\times10^{6}\ V/m[/tex]

Hence, The net electric field is [tex]1.39\times10^{6}\ V/m[/tex]

The net electric field will be "[tex]1.39\times 10^ 6[/tex] V/m".

Electric field:

According to the question,

0 mark charge = +5.0 μC

50 mark charge = -4.0 μC

We know the formula,

→ [tex]E = \frac{kq}{r^2}[/tex]

By substituting the values,

   [tex]E_1 = \frac{8.99\times 10^9\times 5.0\times 10^{-6}}{(30\times 10^{-2})^2}[/tex]

        [tex]= 499444.44[/tex] V/m

Now,

→ [tex]E_2 = \frac{8.99\times 10^9\times 4.0\times 10^{-6 }}{(20\times 10^{-2})^2}[/tex]

         [tex]= 89900 0[/tex] V/m

hence,

The net electric field (E) be:

= E₁ + E₂

= [tex]499444.44+899000[/tex]

= [tex]1398444.4 4[/tex] or, [tex]1.39\times 10^6[/tex] V/m

Thus the above answer is correct.  

Find out more information about electric field here:

https://brainly.com/question/14372859