Ayyy, wassup people! can y'all do my homework? Imma reward you.

1. Simplify Fully [tex]\frac{x+3}{4}+\frac{x-5}{3}[/tex]
2.Write [tex]\frac{1}{x+4}+\frac{2}{x-4}[/tex] as a single fraction in it's simplest form.

Respuesta :

Answer and Step-by-step explanation:

[tex]Good~Day![/tex]

[tex]Let's~answer~your~question~shall~we?[/tex]

Answer for the first question:

[tex]=\frac{3(x+3)}{12} +\frac{4(x-5)}{12}[/tex]

[tex]=\frac{x(x+3)~+~4(x-5)}{12}[/tex]

[tex]=\frac{3x+~9+~4x~4-20}{12}[/tex]

[tex]=\frac{7x~-~11}{12}[/tex]

Answer:

→  [tex]\frac{7x~-~11}{12}[/tex]

 ________________________________________________

Answer for the second question:

[tex]\frac{x-4}{(x+4)~(x-4)} ~+ ~\frac{2(x+4)}{(x+4)~(x-4)}[/tex]

[tex]=\frac{x-4~+~2~(x+4)}{(x+4)~(x-4)} =\frac{x-4~+~2x~+8}{(x+4)~(x-4)}[/tex]

[tex]=\frac{3x~+~4}{(x+4)~(x-4)}[/tex]

Answer:

→  [tex]\frac{3x~+~4}{(x+4)~(x-4)}[/tex]

Answer:

1) (7x-11)/12

2) (3x+4)/(x²-16)

Step-by-step explanation:

1)

(x+3)/4 + (x-5)/3

Lcm: 12

[3(x+3) + 4(x-5)]/12

(3x+4x+9-20)/12

(7x-11)/12

2) 1/(x+4) + 2/(x-4)

Lcm: (x+4)(x-4) = x²-16

[(x-4)(1) + (x+4)(2)]/(x²-16)

(x-4+2x+8)/(x²-16)

(3x+4)/(x²-16)