Determine the longest interval in which the given initialvalue problemis certainto have a unique twicedifferentiable solution. Do not attempt to find the solutionty'' + 3y = t, y(1) = 1, y'(1) = 9

Respuesta :

Answer:

t_o = 3, so solution exists on (0,4).  

Step-by-step explanation:

Use Theorem

Divide equation with t(t — 4).

y''+[3/(t-4)]*y'+ [4/t(t-4)]*y=2/t(t-4)

p(t)=3/t-4—> continuous on (-∞, 4) and (4,∞)

q(t) = 4/t(t-4) —> continuous on (-∞,0), (0,4) and (4, ∞)

g(t) = 2/t(t-4)—> continuous on (-∞, 0), (0,4) and (4,∞)

t_o = 3, so solution exists on (0,4).