contestada

Gold forms a substitutional solid solution with silver. Compute the number of gold atoms per cubic centimeter for a silver-gold alloy that contains 42 wt% Au and 58 wt% Ag. The densities of pure gold and silver are 19.32 and 10.49 g/cm3, respectively. The atomic weight of Au is 196.97 g/mol.

Respuesta :

Answer: The number of gold atoms per cubic centimeters in the given alloy is [tex]1.83\times 10^{22}[/tex]

Explanation:

To calculate the number of gold atoms per cubic centimeters for te given silver-gold alloy, we use the equation:

[tex]N_{Au}=\frac{N_AC_{Au}}{(\frac{C_{Au}M_{Au}}{\rho_{Au}})+(\frac{M_{Au}(100-C_{Au})}{\rho_{Ag}})}[/tex]

where,

[tex]N_{Au}[/tex] = number of gold atoms per cubic centimeters

[tex]N_A[/tex] = Avogadro's number = [tex]6.022\times 10^{23}atoms/mol[/tex]

[tex]C_{Au}[/tex] = Mass percent of gold in the alloy = 42 %

[tex]\rho_{Au}[/tex] = Density of pure gold = [tex]19.32g/cm^3[/tex]

[tex]\rho_{Ag}[/tex] = Density of pure silver = [tex]10.49g/cm^3[/tex]

[tex]M_{Au[/tex] = molar mass of gold = 196.97 g/mol

Putting values in above equation, we get:

[tex]N_{Au}=\frac{(6.022\times 10^{23}atoms/mol)\times 48\%}{(\frac{48\%\times 196.97g/mol}{19.32g/cm^3})+(\frac{196.97g/mol\times 58\%}{10.49g/cm^3})}\\\\N_{Au}=1.83\times 10^{22}atoms/cm^3[/tex]

Hence, the number of gold atoms per cubic centimeters in the given alloy is [tex]1.83\times 10^{22}[/tex]