Answer:
[tex]t=45.7s[/tex]
[tex]\alpha =116revolutions[/tex]
Explanation:
Since we have given values of ω₀=32.o rad/s ,ω=0 and α=-0.700 rad/s² to find t we use below equation
[tex]w=w_{o}+at\\ 0=(32.0rad/s)+(-0.700rad/s^{2} )t\\t=\frac{-32.0}{-0.700} \\t=45.7s[/tex]
To find revolutions we use below equation
[tex]w^{2}=w_{o}^{2}+2a\alpha[/tex]
Substitute the given values to find revolutions α
So
[tex]0=(32.0rad/s)^{2}+2(-0.700rad/s^{2} )\alpha \\\alpha =\frac{(-32.0rad/s)^{2}}{2(-0.700rad/s^{2} )} \\\alpha =731rad[/tex]
To convert rad to rev:
[tex]\alpha =(731rad)*(\frac{1rev}{2\pi rad} )\\\alpha =116revolutions[/tex]