The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, y2 = y1(x) e−∫P(x) dx y 2 1 (x) dx (5) as instructed, to find a second solution y2(x). y'' − 12y' + 36y = 0; y1 = e6x

Respuesta :

Given [tex]y_1=e^{6x}[/tex], assume a second solution of the form [tex]y_2=vy_1[/tex], with derivatives

[tex]{y_2}'=v'y_1+v{y_1}'[/tex]

[tex]{y_2}''=v''y_1+2v'{y_1}'+v{y_1}''[/tex]

With [tex]y_1=e^{6x}[/tex], you have [tex]{y_1}'=6e^{6x}[/tex] and [tex]{y_1}''=36e^{6x}[/tex].

Substitute these into the ODE and you get

[tex](e^{6x}v''+12e^{6x}v'+36e^{6x}v)-12(e^{6x}v'+6e^{6x}v)+36e^{6x}v=0[/tex]

[tex]v''+12v'=0[/tex]

Now substitute [tex]w=v'[/tex], so that [tex]w'=v''[/tex] and you have a linear first-order ODE:

[tex]w'+12w=0\implies e^{12x}w'+12e^{12x}w=(e^{12x}w)'=0\implies e^{12x}w=C[/tex]

[tex]\implies w=v'=Ce^{-12x}[/tex]

[tex]\implies v=C_1e^{-12x}+C_2[/tex]

[tex]\implies y_2=(C_1e^{-12x}+C_2)e^{6x}=C_1e^{-6x}+C_2e^{6x}[/tex]

But [tex]y_1=e^{6x}[/tex] is already accounted for, so the second fundamental solution to the ODE is [tex]y_2=e^{-6x}[/tex].