[tex]3x+4y=-14\implies y=-\dfrac{3x+14}4[/tex]
and so [tex]\ell_1[/tex] has slope -3/4. Then any line perpendicular to [tex]\ell_1[/tex] has slope 4/3.
Given that [tex]\ell_2\perp\ell_1[/tex] and [tex]\ell_2[/tex] passes through (-5, 7), its equation is
[tex]y-7=\dfrac43(x+5)\implies y=\dfrac{4x}3+\dfrac{41}3[/tex]
so that [tex]m=\frac43[/tex] and [tex]b=\frac{41}3[/tex], which gives
[tex]m+b=\dfrac{45}3=\boxed{15}[/tex]