Answer:
1. 1340
2. Variance = 47200, standard deviation = 217.25556
Step-by-step explanation:
1-
If X is the random variable that give the number of admissions, then the expected number of admissions E[X] for the fall semester is
1080*P(X=1080)+1380*P(X=1380)+1540*P(X=1540) =
1080*0.4+1380*0.1+1540*0.5 = 1340
2-
The variance is defined as
[tex]\sigma^2=E[X^2]-(E[X])^2}[/tex]
We have
[tex]E[X^2]=(1080)^2*0.4+(1380)^2*0.1+(1540)^2*0.5=1842800[/tex]
whereas
[tex](E[X])^2=(1340)^2=1795600[/tex]
So the variance equals
[tex]\sigma^2=1842800-1795600=47200[/tex]
The standard deviation is just the square root of the variance, so, the standard deviation is
[tex]\sigma=\sqrt{47200}=217.25556[/tex]