A random sample of 10 shipments of stick-on labels showed the following order sizes. 12,000 18,000 30,000 60,000 14,000 10,500 52,000 14,000 15,700 19,000 Click here for the Excel Data File (a) Construct a 95% confidence interval for the true mean order size. (Round your standard deviation answer to 1 decimal place and t-value to 3 decimal places. Round your answers to the nearest whole number.) The 95% confidence interval to

Respuesta :

Answer:

(a) 95% confidence interval for the true mean order size =  [ 11972.22 , 37067.80 ]

Step-by-step explanation:

We are given a random sample of 10 shipments of stick-on labels with following order sizes;

12,000, 18,000, 30,000, 60,000, 14,000, 10,500, 52,000, 14,000, 15,700, 19,000

Firstly, Sample mean, [tex]Xbar[/tex] = [tex]\frac{\sum X}{n}[/tex]

  = [tex]\frac{12,000+ 18,000+ 30,000 +60,000+ 14,000+ 10,500+ 52,000+ 14,000 +15,700+ 19,000}{10}[/tex] = 24520

Sample standard deviation, s = [tex]\sqrt{\frac{\sum (X-Xbar)^{2} }{n-1} }[/tex] = 17541.81

The pivotal quantity for confidence interval is given by;

            P.Q. = [tex]\frac{Xbar - \mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]

So, the 95% confidence interval for true mean order size is given by;

P(-2.262 < [tex]t_9[/tex] < 2.262) = 0.95

P(-2.262 < [tex]\frac{Xbar - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.262) = 0.95

P(-2.262 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]Xbar - \mu[/tex] < 2.262 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95

P(Xbar - 2.262 * [tex]\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < Xbar + 2.262 * [tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ Xbar - 2.262 * [tex]\frac{s}{\sqrt{n} }[/tex] , Xbar + 2.262 * [tex]\frac{s}{\sqrt{n} }[/tex] ]

                                           = [ 24520 - 2.262*[tex]\frac{17541.81}{\sqrt{10} }[/tex] ,  24520 - 2.262*[tex]\frac{17541.81}{\sqrt{10} }[/tex] ]

                                           = [ 11972.22 , 37067.80 ]