A 208 V delta-connected source is energizing two parallel loads. One of the loads is connected in delta and the other in wye. The delta load has impedance ΖΔ-10 L-25°Ω. The wye load has impedance ZY-5 L40°Ω.

Compute the following line current active and reactive power.

Respuesta :

Given Information:

Vab = 208 V

ZY = Z1 = 10 < -25°  Ω

Zdelta = Z2 = 5 < 40°  Ω

Required Information:

Line current = Ia = ?

Active Power = P = ?

Reactive Power = Q = ?

Answer:

[tex]I_{a} = 51.02<-30.235[/tex] ° A

[tex]P = 15.88[/tex] [tex]kW[/tex]

[tex]Q = 9.25[/tex] [tex]kVAR[/tex]

Explanation:

First, convert the wye connected load into delta

[tex]Z_{delta} = 3*ZY[/tex][tex]= 3*(5 < 40)[/tex] [tex]= 15 < 40[/tex]° Ω

[tex]Z2 = 15 < 40[/tex]° Ω

Now both of the loads and also the source are delta connected, now we can proceed further.

Find the equivalent load impedance, since the loads are connected in parallel;

[tex]Z_{eq} = Z1*Z2/(Z1 + Z2)[/tex]

[tex]Z_{eq} = (10 < -25)*(15 < 40)/(10 < -25 + 15 < 40)[/tex]

[tex]Z_{eq} = 7.06 + j0.029[/tex] Ω

[tex]Z_{eq} = 7.06 < 0.235[/tex]° Ω

The phase current can be found by

[tex]I_{ab} = V_{ab} /Z_{eq}[/tex]

[tex]I_{ab} = 208/(7.06 < 0.235)[/tex]

[tex]I_{ab} = 29.46 - j0.1208[/tex] A

[tex]I_{ab} = 29.46 < -0.235[/tex]° A

The relation between phase current [tex]I_{ab}[/tex] and line current [tex]I_{a}[/tex] is

[tex]I_{a} = \sqrt{3} I_{ab}<-30[/tex]

[tex]I_{a} = \sqrt{3}*29.46<-30-0.235[/tex]

[tex]I_{a} = 51.02<-30.235[/tex] ° A

The Active Power is

[tex]P = \sqrt{3} V_{ab}I_{a} cos(30.235)[/tex]

[tex]P = \sqrt{3}*208*51.02*cos(30.235)[/tex]

[tex]P = 15.88[/tex] [tex]kW[/tex]

The Reactive Power is

[tex]Q = \sqrt{3} V_{ab}I_{a} sin(30.235)[/tex]

[tex]Q = \sqrt{3}*208*51.02*sin(30.235)[/tex]

[tex]Q = 9.25[/tex] [tex]kVAR[/tex]