An Organic Rankine Cycle (ORC) with R-410A has the boiler at 3 MPa superheating to 180°C, and the condenser operates at 800 kPa.
Find all four energy transfers and the cycle efficiency.

Respuesta :

Answer:

An Organic Rankine Cycle (ORC) with R-410A has the boiler at 3 MPa superheating to 180°C, and the condenser operates at 800 kPa.

Find all four energy transfers and the cycle efficiency.

The question is solved for steam please plug in the properties for R-410A using the same procedure as below to solve for R-410A

The answers are as follows

(i) At the boiler

Q₁ = 40.73 kJ·kg⁻¹

(ii) At the turbine

[tex]W_T[/tex]  = 2.908 kJ·kg⁻¹

(iii) At the condenser

Q₂   = 40.272 kJ·kg⁻¹

(iv)  At the feed pump

 [tex]W_p[/tex]  = 2.453 kJ·kg⁻¹

Cycle efficiency is 4.4 %

Explanation:

Boiler Pressure p₁ = 3 MPa @ 180 °C

Condenser pressure p₂ = 800 kPa

From the thermodynamics tables we have for steam  

At 3 MPa (p₁), 180 °C: h₁ = 764.198 kJ·kg⁻¹

and                              s₁ = 2.1368 kJ· kg⁻¹· K⁻¹

At 800 kPa (p₂)           h₃ = [tex]h_{f(p_2)}[/tex] = 721.018 kJ·kg⁻¹

                                    s₃ =  [tex]s_{f(p_2)}[/tex] = 2.0460 kJ· kg⁻¹· K⁻¹

                          [tex]h_{fg(p_2)}[/tex]  = 2047.28 kJ·kg⁻¹      [tex]s_{g(p_2)}[/tex] = 6.6615 kJ· kg⁻¹· K⁻¹

                       [tex]v_{f(p_2)}[/tex]  = 0.00111479 m³·kg⁻¹      [tex]s_{fg(p_2)}[/tex] = 4.6156 kJ· kg⁻¹· K⁻¹

                       Since s₁ = s₂

                                    2.1368 =  [tex]s_{f(p_2)}[/tex] + x₂· [tex]s_{fg(p_2)}[/tex]  = 2.0460 + x₂·4.6156

From where x₂ [tex]=\frac{2.1368-2.0460}{4.6156}[/tex] = 0.01967

Therefore h₂=[tex]h_{f(p_2)}[/tex]  + x₂·[tex]h_{fg(p_2)}[/tex] = 721.018+0.01967×2047.28 = 761.29 kJ·kg⁻¹

                             h₂ = 761.29 kJ·kg⁻¹

                     [tex]h_{f4}-h_{f(p_2)} = v_{f(p_2)} (p_1-p_2)[/tex]

                                =  0.00111479 m³·kg⁻¹×(3000-800) = 2.453 kJ·kg⁻¹

and [tex]h_{f4}[/tex] = 2.453 + 721.018  = 723.471 kJ·kg⁻¹

Therefore for 1 kg of fluid we have

Through the implementation of of the steady flow energy equation to the

i) Boiler

ii) Turbine

iii) Condenser

iv) Pump

(i) For the boiler, we have

               [tex]h_{f4}[/tex] + Q₁ = h₁

                        Q₁ = h₁ -   [tex]h_{f4}[/tex] = 764.198 -723.471  = 40.73 kJ·kg⁻¹

(ii) For turbine

                          h₁ = [tex]W_T+h_2[/tex]    Where [tex]W_T[/tex] = Work done by turbine

                           [tex]W_T[/tex]  = h₁ -h₂ = 764.198 - 761.29 = 2.908 kJ·kg⁻¹

(iii) For the condenser we have

                               h₂ = Q₂ +  [tex]h_{f3}[/tex] where   [tex]h_{f3}[/tex]  =  [tex]h_{f2}[/tex] =  721.018 kJ·kg⁻¹

                          Q₂  = h₂ -  [tex]h_{f3}[/tex] = 761.29 - 721.018 = 40.272 kJ·kg⁻¹

(iv)  The feed pump gives

                              [tex]h_{f3}[/tex] +  [tex]W_p[/tex] =   [tex]h_{f4}[/tex] Where,   [tex]W_p[/tex] = Work done by pump

                                       [tex]W_p[/tex]  =   [tex]h_{f4}[/tex] -  [tex]h_{f3}[/tex] = 723.471 - 721.018 = 2.453 kJ·kg⁻¹

                                     

Cycle efficiency  is given by

[tex]\frac{h_1-h_2}{h_1-h_3}[/tex] = [tex]\frac{764.198-761.29}{764.198-721.018} =0.044[/tex]  4.4 %

Efficiency of the Rankine cycle is =

[tex]\eta_{Rankine} = \frac{W_{net}}{Q_1} = \frac{W_T-W_P}{Q_1}[/tex]

             [tex]=\frac{2.908-2.453}{40.73}[/tex]  = 0.0112 or 1.12 %