Find all the zeroes of the polynomial function f(x)=x^3-5x^2+6x-30 in you use synthetic division show all three lines of numbers


please show steps and thank you

Respuesta :

Answer:

5,[tex]i\sqrt 6[/tex] and [tex]-i\sqrt 6[/tex]

Step-by-step explanation:

We are given that  the polynomial

[tex]f(x)=x^3-5x^2+6x-30[/tex]

We have to find the all the zeroes of the polynomial function.

[tex]f(x)=0[/tex]

[tex]x^3-5x^2+6x-30=0[/tex]

[tex]x^2(x-5)+6(x-5)=0[/tex]

[tex](x-5)(x^2+6)=0[/tex]

[tex]x-5=0[/tex]

[tex]x=5[/tex]

[tex]x^2+6=0[/tex]

[tex]x^2=-6[/tex]

[tex]x=\pm\sqrt{-6}=\pm i\sqrt6[/tex]

Using [tex]\sqrt{-1}=i[/tex]

Hence, all the zeroes of the polynomial function are

5,[tex]i\sqrt 6[/tex] and [tex]-i\sqrt 6[/tex]