g You are blowing air into a spherical balloon at a rate of 33 cubic inches per second. Given that the radius of the balloon is 22 inches when t=4t=4 seconds answer the following questions: (a) How fast is the radius of the balloon growing at t=4t=4 seconds

Respuesta :

Answer:

[tex]\frac{3}{16\pi}in/sec[/tex]

Explanation:

We are given that

[tex]\frac{dv}{dt}=3in^3/s[/tex]

r=2 in when t=4 s

We have to find the rate of change of radius.

We know that

Volume of sphere=[tex]V=\frac{4}{3}\pi r^3[/tex]

Differentiate w.r.t t

[tex]\frac{dV}{dt}=4\pi r^2\frac{dr}{dt}[/tex]

Substitute the values

[tex]3=4\pi(2)^2\times \frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}=\frac{3}{4\pi(2)^2}[/tex]

[tex]\frac{dr}{dt}=\frac{3}{16\pi}in/sec[/tex]