Answer:
[tex]7759.3m/s[/tex]
Explanation:
We are given that
Mass of satellite=[tex]m=500 kg[/tex]
Distance, d=245 km=[tex]245000m[/tex]
Using 1km=1000m
Radius of the earth=[tex]r_e=6.38\times 10^6[/tex]m
[tex]G=6.67\times 10^{-11}Nm^2/kg^2[/tex]
Mass of earth,[tex]m_e=5.98\times 10^{24} Kg[/tex]
We have to find the speed of the satellite.
Radius of orbit=[tex]R=r_e+d=245000+6.38\times 10^6=6.625\times 10^6m[/tex]
Centripetal force of satellite=Gravitational force
[tex]\frac{mv^2}{R}=\frac{Gmm_e}{R^2}[/tex]
[tex]v^2=\frac{Gm_e}{R}[/tex]
[tex]v=\sqrt{\frac{Gm_e}{R}}[/tex]
[tex]v=\sqrt{\frac{6.67\times 10^{-11}\times 5.98\times 10^{24}}{6.625\times 10^6}}[/tex]
[tex]v=7759.3m/s[/tex]