Respuesta :
Answer:
v = 31.98 m/s
[tex]\theta = 44.96^0[/tex]
Explanation:
Let [tex]v_v, v_h[/tex] be the vertical and horizontal components required of the initial velocity of the bale. For the bale to be shot to 8ft above with acceleration of g = -32 ft/s2, we can calculate it using the following equation of motion:
[tex]v^2 - v_v^2 = 2a\Delta s[/tex]
where v = 0 m/s is the final velocity of the bale when reaches the trailing wagon, [tex]v_v[/tex] is the initial vertical velocity of the bale, g = -32 m/s2 is the deceleration of the bale, and [tex]\Delta h[/tex] is the vertical distance traveled.
[tex]0 - v_v^2 = 2*(-32)*8 = -512 [/tex]
[tex]v_v = \sqrt{512} = 22.6 m/s[/tex]
The time it takes to travel that distance can be calculated using the following equation of motion
[tex]s = v_vt + gt^2/2[/tex]
[tex]8 = 22.6t - 32t^2/2[/tex]
[tex]16t^2 - 22.6t + 8 = 0[/tex]
[tex]t= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
[tex]t= \frac{22.6\pm \sqrt{(-22.6)^2 - 4*(16)*(8)}}{2*(16)}[/tex]
[tex]t= \frac{22.6\pm0}{32}[/tex]
t = 0.707s
This is also the time it takes for the bale to travel 16ft horizontally. So we can calculate the initial horizontal velocity
[tex]v_h = 16 / 0.707 = 22.63 m/s[/tex]
So the magnitude and direction of the whole initial velocity is
[tex]v = \sqrt{v_v^2 + v_h^2} = \sqrt{22.6^2 + 22.63^2} = \sqrt{510.76 + 512.1169} = \sqrt{1022.8769} = 31.98 m/s[/tex]
[tex]tan\theta = \frac{v_v}{v_h} = \frac{22.6}{22.63} = 1[/tex]
[tex]\alpha = tan^{-1}1 = 0.78 rad \approx 44.96^0 [/tex]