Answer:
a) 1.3
b) 1.81
c) 1.345
Step-by-step explanation:
a)
Mean number of drums= E(x)= sum[x*p(x)]
x    p(x)   x*p(x)
0 Â Â Â 0.4 Â Â Â Â 0
1 Â Â Â Â 0.2 Â Â Â 0.2
2 Â Â Â 0.2 Â Â Â 0.4
3 Â Â Â 0.1 Â Â Â Â 0.3
4 Â Â Â 0.1 Â Â Â Â 0.4
Mean number of drums=0+0.2+0.4+0.3+0.4
Mean number of drums=1.3
b)
Variance of the number of drums= E(x²)-[E(x)]²= sum[x²*p(x)]-[sum[x*p(x)]]²
x    p(x)   x*p(x)   x²   x²*p(x)
0 Â Â Â 0.4 Â Â Â Â 0 Â Â Â Â 0 Â Â Â Â 0
1 Â Â Â Â 0.2 Â Â Â 0.2 Â Â Â Â 1 Â Â Â Â 0.2
2 Â Â Â 0.2 Â Â Â 0.4 Â Â Â Â 4 Â Â Â 0.8
3 Â Â Â 0.1 Â Â Â Â 0.3 Â Â Â Â 9 Â Â Â Â 0.9
4 Â Â Â 0.1 Â Â Â Â 0.4 Â Â Â Â 16 Â Â Â 1.6
E(x²)=sum[x²*p(x)]=0+0.2+0.8+0.9+1.6=3.5
Variance of the number of drums=3.5-[1.3]²
Variance of the number of drums=3.5-1.69
Variance of the number of drums=1.81
c)
Standard deviation of the number of drums=√Variance of the number of drums
Standard deviation of the number of drums=√1.81
Standard deviation of the number of drums=1.345