Answer:
[tex]x=-2 or x=8[/tex]
Step-by-step explanation:
Let the number be 'x'
Given:
[tex]x^2-16=6x[/tex]
Solving the quadratic equation:
[tex]x^2-6x-16=0[/tex]
[tex]x^2+2x-8x-16=0\\[/tex]
[tex]x^2+2x-8x-16=0\\x(x+2)-8(x+2)=0\\[/tex]
[tex]x(x+2)-8(x+2)=0\\\\(x+2)(x-8)=0\\[/tex]
[tex](x+2)=0, (x-8)=0[/tex]
[tex]x=-2,x=8[/tex]
The value of 'x' can be [tex]x=-2 or x=8[/tex]