The drawing shows two situations in which charges are placed on the x and y axes. They are all located at the same distance of 5.70 cm from the origin O. For each of the situations in the drawing, determine the magnitude of the net electric field at the origin.

Respuesta :

Answer:

For situation (a)

net charge E = E₊₂ + E₋₅ + E₋₃

E =  K(q/d²)

where K = 8.99e9

d = 5.7cm = 5.7e-2m

Therefore,

E₊₂(x) = K(q/d²) = (8.99e9)× ((2.0e-6)÷(5.7e-2)) = 3.15e5(+x)

E₋₅(y) = K(q/d²) = (8.99e9)× ((5.0e-6)÷(5.7e-2)) =  7.88e5(+y)

E₋₃(x) = K(q/d²) = (8.99e9)× ((3.0e6)÷(5.7e-2)) =  4.73e5(+x)

thus

E = E₊₂ + E₋₅ + E₋₃

= 3.15e5(x) + 7.88e5(y) + 4.73e6(x)

= 7.88e6(x) + 7.88e6(y)

use Pythagorean theorem

I E I  = [tex]\sqrt{(7.89e5)^{2} + (7.89e5)^{2}}[/tex] =  1.242e6[tex]\frac{N}{C}[/tex]

∅ = [tex]tan^{-1}[/tex][tex](\frac{7.88e5}{7.88e5} )[/tex] = [tex]tan^{-1}(1)[/tex] = 45°

Thus for (a) net magnitude =  1.115e6[tex]\frac{N}{C}[/tex] @ 45° above +x axis

for situation (b)

net charge E = E₊₄ + E₊₁ + E₋₁ + E₊₆

E₊₄(x) = K(q/d²) = (8.99e9)× ((4.0e-6)÷(5.7e-2)) = 6.30e5(+x)

 E₊₁(y) = K(q/d²) = (8.99e9)× ((1.0e-6)÷(5.7e-2)) = 1.58e5(-y)

E₋₁(x) = K(q/d²) = (8.99e9)× ((1.0e-6)÷(5.7e-2)) = 1.58e5(+x)

E₊₆(y) = K(q/d²) = (8.99e9)× ((6.0e-6)÷(5.7e-2)) = 9.46e5(+y)

thus,

E = E₊₄ + E₊₁ + E₋₁ + E₊₆

= 6.30e5(x) - 1.58e5(y) + 1.58e5(x) + 9.46e5(y)

= 7.88e5(x) + 7.88e5(y)

use Pythagorean theorem

I E I  = [tex]\sqrt{(7.88e5)^{2} + (7.88e5)^{2}}[/tex] =  1.242e6[tex]\frac{N}{C}[/tex]

∅ = [tex]tan^{-1}[/tex][tex](\frac{7.88e5}{7.88e5} )[/tex] = [tex]tan^{-1}(1)[/tex] = 45°

Thus for (a) and (b) the net magnitude =  1.242e6[tex]\frac{N}{C}[/tex] @ 45° above +x axis

Explanation:

I attached a sample image, i hope that corresponds to your question

Ver imagen lazicah