A circular ring of charge of radius a lies in the x-y plane and is centered at the origin. Assume also that the ring is in air and
carries a uniform density pℓ.

(a) Show that the electrical potential at (0, 0, z) is given by V = pℓa/[2ƹ0(a2 + z2)1/2].
(b) Find the corresponding electric eld E

Respuesta :

[tex]\nablaV[/tex]Answer:

[tex]V = \frac{1}{2 \epsilon} { \frac{a\rho l}{\sqrt{a^{2} +z^{2} }} }[/tex]

(b) [tex]E = \frac{a\rho l}{2 \epsilon} {\frac{z}{({a^{2} +z^{2}})^\frac{3}{2}} }\hat{Z}[/tex]

Explanation:

[tex]V = \frac{1}{4\pi \epsilon} \int\limits^a_b {\rho l/R'} \, dl' \\\\V = \frac{1}{4\pi \epsilon} \int\limits^{2\pi }_0 { \frac{\rho l}{\sqrt{a^{2} +r^{2}-2arcos(\phi'-\phi)+z^{2} }} } \, ad\phi'[/tex]

(0, 0, z)  implies (r, Φ, z) in cylindrical coordinates

[tex]V = \frac{1}{4\pi \epsilon} \int\limits^{2\pi} _0 { \frac{\rho l}{\sqrt{a^{2} +z^{2} }} } \, ad\phi'\\\\V = \frac{1}{4\pi \epsilon} { \frac{\rho l}{\sqrt{a^{2} +z^{2} }} } \ a (2\pi -0)\\\\V = \frac{1}{2 \epsilon} { \frac{a\rho l}{\sqrt{a^{2} +z^{2} }} }[/tex]

(b) Corresponding electric field E = -[tex]\nabla V[/tex]

[tex]-\nabla V = -\frac{a\rho l}{2 \epsilon} { \frac{\delta }{\delta z} \frac{1}{\sqrt{a^{2} +z^{2} }} } \hat{Z}\\\\-\nabla V = \frac{a\rho l}{2 \epsilon} {\frac{z}{({a^{2} +z^{2}})^\frac{3}{2}} }\hat{Z}[/tex]