Respuesta :

Answer:

The missing term is:

[tex]a_2=14[/tex]

Step-by-step explanation:

Considering the geometric sequence

[tex]2,\:?,\:98,\:...[/tex]

Here,

[tex]a_1=2[/tex]

[tex]a_3=98[/tex]

[tex]a_2=?[/tex]

The general term of a geometric sequence is given by the formula:

[tex]a_n=a_1\cdot \:r^{n-1}[/tex]

where [tex]a_1[/tex] is the initial term and [tex]r[/tex] the common ratio.

as

[tex]a_3=a_1\cdot \:r^{3-1}[/tex]

[tex]98=2\cdot \:r^{3-1}[/tex]         ∵ [tex]a_1=2[/tex]

[tex]\mathrm{Switch\:sides}[/tex]

[tex]2r^{3-1}=98[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}2[/tex]

[tex]\frac{2r^{3-1}}{2}=\frac{98}{2}[/tex]

[tex]r^{3-1}=49[/tex]

[tex]r^2=49[/tex]

[tex]\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}[/tex]

[tex]r=\sqrt{49},\:r=-\sqrt{49}[/tex]

[tex]r=7,\:r=-7[/tex]

Taking positive value of [tex]r = 7[/tex]

[tex]a_2=a_1\cdot \:r^{n-1}[/tex]

putting [tex]r = 7[/tex]

[tex]a_2=2\cdot \:7^{2-1}[/tex]

[tex]a_2=2\cdot \:7[/tex]

[tex]a_2=14[/tex]

So, the sequence becomes  [tex]2,\:14,\:98,\:...[/tex]

Therefore, the missing term is:

[tex]a_2=14[/tex]