Respuesta :

Step-by-step explanation:

Let edge length of cube be x units.

[tex]volume \: of \: cube = \frac{27}{64} \\ \\ \therefore \: {x}^{3} = \frac{27}{64} \\ \\ \therefore \: {x}^{3} = \frac{ {3}^{3} }{ {4}^{3} } \\ \\ \therefore \: {x}^{3} = (\frac{ {3}}{ {4} } )^{3} \\ \\ \therefore \: {x} = \frac{ {3}}{ {4} } \\ \\ \therefore \: {x} =0.75 \: {unit}[/tex]

Hence, length of edge of cube = 0.75 units