Respuesta :
Answer:
see explanation
Step-by-step explanation:
Using the rule of logarithms
log[tex]x^{n}[/tex] = nlogx
Given
a = [tex]b^{x}[/tex] ← take the log of both sides
loga = log[tex]b^{x}[/tex] = xlogb ⇒ x = [tex]\frac{loga}{logb}[/tex]
b = [tex]c^{y}[/tex] ← take the log of both sides
logb = log[tex]c^{y}[/tex] = ylogc ⇒ y = [tex]\frac{logb}{logc}[/tex]
c = [tex]a^{z}[/tex] ← take the log of both sides
logc = log[tex]a^{z}[/tex] = zloga ⇒ z = [tex]\frac{logc}{loga}[/tex]
Thus
xyz = [tex]\frac{loga}{logb}[/tex] × [tex]\frac{logb}{logc}[/tex] × [tex]\frac{logc}{loga}[/tex] ← cancel loga, logb, logc on numerators/denominators
Hence xyz = 1
Answer: xyz = 1
Step-by-step explanation:
a = b^x given
introducing log into both sides
log a = log b^x
log a = x log b
divide both sides by log b
x = log a/ log b ... (1)
b = c^y given
introducing log into both sides
log b = log c^y
log b = y log c
divide both sides by log c
y = log b/ log c ... (2)
c = a^z given
introducing log to both sides
log c = log a^z
log c = z log a
divide both sides by log a
z = log c / log a ... (3)
Multiplying equations 1, 2 and 3 together;
x*y *z = (log a/ log b) * (log b/ log c)
* ( log c/ log a)
Therefore,
xyz = 1. proved