Respuesta :

Option D:

x = 2.06

Solution:

Given equation is [tex]2^{3x}=73[/tex].

To find the value of x:

If f(x) = g(x), then [tex]\ln (f(x))=\ln (g(x))[/tex].

Raise ln on both sides of the equation.

[tex]\ln 2^{3x}=\ln73[/tex]

Using log rule: [tex]\log _{a}\left(x^{b}\right)=b \cdot \log _{a}(x)[/tex]

[tex]3 x \ln (2)=\ln 73[/tex]

Divide by 3ln(2) on both sides.

[tex]$\frac{3 x \ln (2)}{3 \ln (2)}=\frac{\ln (73)}{3 \ln (2)}[/tex]

[tex]$x=\frac{\ln (73)}{3 \ln (2)}[/tex]

x = 2.0632

x = 2.06

Hence Option D is the correct answer.

Answer:

x = 2.06

Step-by-step explanation:

It's correct!