Respuesta :
Answer:
[tex] C'(y) = 50 -\frac{3900000}{y^2}=0 [/tex]
And we can solve for y and we got:
[tex] y = \sqrt{\frac{3900000}{50}}= 279.285[/tex]
And using condition (1) we can solve for x and we got:
[tex] x= \frac{60000}{279.285}= 214.834[/tex]
So then the minimum cost for this case would be:
[tex] C = 50*279.285 + 65*214.834 = 27928.49[/tex]
Explanation:
For this case the graph attached illustrate the problem for this case
We know that the total area is 60000, so then we have:
[tex] xy = 60000[/tex]
If we solve for x we got:
[tex] x = \frac{60000}{y}[/tex] Â (1)
Now we can define the cost function like this:
[tex] C = 2*(25)*y + 25 x +40 x[/tex]
[tex] C(x,y) = 50 y + 65 x[/tex]
We can use the condition (1) and if we replace in the cost function we have:
[tex] C(y) = 50 y + 65(\frac{60000}{y})[/tex]
Since we need to minimize the cost, we can derivate the function in terms of y and we got:
[tex] C'(y) = 50 -\frac{3900000}{y^2}=0 [/tex]
And we can solve for y and we got:
[tex] y = \sqrt{\frac{3900000}{50}}= 279.285[/tex]
And using condition (1) we can solve for x and we got:
[tex] x= \frac{60000}{279.285}= 214.834[/tex]
So then the minimum cost for this case would be:
[tex] C = 50*279.285 + 65*214.834 = 27928.49[/tex]
