Find the co-ordinates of the point of intersection of the two lines (equations of the lines are given below).
2x - 7y = 2
4x + 5y = 42

Hint: solve by elimination

Respuesta :

The coordinates of the point of intersection of the two lines is [tex](8,2)[/tex]

Explanation:

The two equations are [tex]$2 x-7 y=2$[/tex] and [tex]$4 x+5 y=42$[/tex]

To determine the point of intersection of the two lines, we shall the equations using elimination method.

Thus, multiplying the equation [tex]$2 x-7 y=2$[/tex] by -2, we have,

[tex]\begin{aligned}-4 x+14 y &=-4 \\ 4 x+5 y &=42 \end{aligned}$\\---------------------------\\[/tex]

           [tex]19y=38[/tex]

              [tex]y=2[/tex]

Substituting [tex]y=2[/tex] in the equation [tex]$2 x-7 y=2$[/tex], we get,

[tex]2x-7(2)=2[/tex]

  [tex]2x-14=2[/tex]

Adding both sides by 14, we get,

[tex]2x=16[/tex]

Dividing both sides by 2, we get,

[tex]x=8[/tex]

Thus, the coordinates of the point of intersection of the two lines is [tex](8,2)[/tex]