Find the linear approximation of the function g(x) = 3 1 + x at a = 0. g(x) ≈ Correct: Your answer is correct. Use it to approximate the numbers 3 0.95 and 3 1.1 . (Round your answers to three decimal places.)

Respuesta :

Answer:

[tex]3.296x+3[/tex]

2.835

3.330

Step-by-step explanation:

[tex]g(x) = 3^{1+x}[/tex]

Let the linear approximation be L(x) at a = 0. This is given by

[tex]L(x) = g(a) + g'(a)(x-a)[/tex]

[tex]g'(x)[/tex] is the derivative of [tex]g(x)[/tex]. To find this, we use the form

If [tex]f(x) = a^x[/tex], then [tex]f'(x) =a^x\ln a[/tex]

By doing this and applying chain rule for the power (which is a function of x), we have

[tex]g'(x) = 3^{1+x}\ln 3[/tex]

Then

[tex]g'(0) = 3^{1+0}\ln 3 = 3.296[/tex]

Also [tex]g(0) = 3^{1+0} = 3[/tex]

Hence [tex]L(x) = 3+(x-0)\times3.296 = 3.296x + 3[/tex]

For [tex]3^{0.95}[/tex], [tex]1+x = 0.95[/tex] and [tex]x=-0.05[/tex]

Using this in [tex]L(x)[/tex],

[tex]3^{0.95} = 3.296(-0.05) + 3 = 2.835[/tex]

For [tex]3^{1.1}[/tex], [tex]1+x = 1.1[/tex] and [tex]x=0.1[/tex]

Using this in [tex]L(x)[/tex],

[tex]3^{1.1} = 3.296(0.1) + 3 = 3.330[/tex]