The image of (-2, 5) is (1, 1). What is the image of (3, 2) under the same translation? (0, -2) (3, -4) (6, -2) (7, 0)

Respuesta :

Option C: [tex](6,-2)[/tex] is the image of [tex](3,2)[/tex]

Explanation:

It is given that the image of [tex](-2,5)[/tex] is [tex](1,1)[/tex]

Now, we need to find the image of [tex](3,2)[/tex] under the same translation.

First, let us determine the translation rule.

The translation rule is given by

[tex](x,y)\implies(x+h,y+k)[/tex]

Thus, we have,

[tex](-2,5)\implies(-2+h,5+k)\implies(1,1)[/tex]

Equating the corresponding x and y coordinates, we get,

x - coordinate : [tex]-2+h=1[/tex]

                                    [tex]h=1+2[/tex]

                                    [tex]h=3[/tex]

y - coordinate : [tex]5+k=1[/tex]

                                [tex]k=1-5[/tex]

                                [tex]k=-4[/tex]

Thus, the translation rule is given by [tex](x,y)\implies(x+3,y-4)[/tex]

Now, we shall find the image of [tex](3,2)[/tex]

Substituting the coordinate [tex](3,2)[/tex] in the translation rule [tex](x,y)\implies(x+3,y-4)[/tex], we get,

[tex](3,2)\implies(3+3,2-4)[/tex]

[tex](3,2)\implies(6,-2)[/tex]

Thus, the image of [tex](3,2)[/tex] is [tex](6,-2)[/tex]

Therefore, Option C is the correct answer.