Respuesta :
Answer:
- [HOCl] = 0.00909 mol/liter
- [Hâ‚‚O] = 0.03901 mol/liter
- [Clâ‚‚O] = 0.02351 mol/liter
Explanation:
1. Chemical reaction:
[tex]H_2O(g)+Cl_2O(g)\rightleftharpoons 2 HOCl(g)[/tex]
2. Initial concentrations:
i) 1.3 g Hâ‚‚O
- Number of moles = 1.3g / (18.015g/mol) = 0.07216 mol
- Molarity, M = 0.07216 mol / 1.5 liter = 0.0481 mol/liter
ii) 2.2 g Clâ‚‚O
- Number of moles = 2.2 g/ (67.45 g/mol) = 0.0326 mol
- Molarity = 0.0326mol / 1.5 liter = 0.0217 mol/liter
3. ICE (Initial, Change, Equilibrium) table
      [tex]H_2O(g)+Cl_2O(g)\rightleftharpoons 2 HOCl(g)[/tex]
I Â Â Â Â Â Â 0.0481 Â Â Â 0.0326 Â Â Â Â Â Â 0
C        -x         -x        +x
E      0.0481-x   0.0326-x     x
4. Equilibrium expression
    [tex]K_c=\dfrac{[HOCl]^2}{[H_2O].[Cl_2O]}[/tex]
   [tex]0.09=\dfrac{x^2}{(0.0481-x)(0.0326-x)}[/tex]
5. Solve:
      [tex]x^2=0.09(x-0.0481)(x-0.0326)\\\\0.91x^2+0.007263x-0.000141125=0[/tex]
Use the quadatic formula:
[tex]x=\dfrac{-0.007263\pm \sqrt{(0.007263)^2-4(0.91)(-0.000141125)}}{2(0.91)}[/tex]
The positive result is x = 0.00909
Thus the concentrations are:
- [HOCl] = 0.00909 mol/liter
- [Hâ‚‚O] = 0.0481 - 0.00909 = 0.03901 mol/liter
- [Clâ‚‚O] = 0.0326 - 0.00909 = 0.02351 mol/liter