Respuesta :

Question 1:

For this case we have the following functions:

[tex]f (x) = 4x + 1\\g (x) = x ^ 3 + 1[/tex]

We must find[tex]g_ {o} f (0[/tex]):

By definition we have to:

[tex]g_ {o} f = g (f (x))\\f_ {o} g = f (g (x))[/tex]

[tex]g (f (x)) = (4x + 1) ^ 3 + 1[/tex]

We substitute [tex]x = 0[/tex]:

[tex]g (f (0)) = (4 (0) +1) ^ 3 + 1 = 1 ^ 3 + 1 = 2[/tex]

So, we have that [tex]g (f (0)) = 2[/tex]

Answer:

[tex]g (f (0)) = 2[/tex]

Question 2:

For this case we have the following functions:

[tex]f (x) = 4x + 1\\g (x) = x ^ 3 + 1[/tex]

We must find [tex]f_ {o} g (0)[/tex]:

By definition we have to:

[tex]f_ {o} g = f (g (x))\\f (g (x)) = 4 (x ^ 3 + 1) + 1 = 4x ^ 3 + 4 + 1 = 4x ^ 3 + 5[/tex]

We substitute [tex]x = 0[/tex]:

[tex]f (g (0)) = 4 (0) ^ 3 + 5 = 5[/tex]

Answer:

[tex]f (g (0)) = 5[/tex]

Question 3:

For this case we must find the inverse of the following function:

[tex]h (x) = \frac {2x + 1} {3}[/tex]

To do this, we follow the steps below:

We change y for [tex]h (x)[/tex]:

[tex]y = \frac {2x + 1} {3}[/tex]

We exchange variables:

[tex]x = \frac {2y + 1} {3}[/tex]

We clear the value of the variable "y":

[tex]3x = 2y + 1\\3x-1 = 2y\\y = \frac {3x} {2} - \frac {1} {2}[/tex]

We change y for [tex]h^{ -1} (x)[/tex]:

[tex]h ^{ - 1} (x) = \frac {3x} {2} - \frac {1} {2}[/tex]

Answer:

[tex]h ^ {- 1} (x) = \frac {3x} {2} - \frac {1} {2}[/tex]