A copper wire and a tungsten wire of the same length have the same resistance. What is the ratio of the diameter of the copper wire to that of the tungsten wire.

Respuesta :

Answer:

Therefore the ratio of diameter of the copper to that of the tungsten is

[tex]\sqrt{3} :\sqrt{10}[/tex]

Explanation:

Resistance: Resistance is defined to the ratio of voltage to the electricity.

The resistance of a wire is

  1. directly proportional to its length i.e[tex]R\propto l[/tex]
  2. inversely proportional to its cross section area i.e[tex]R\propto \frac{1}{A}[/tex]

Therefore

[tex]R=\rho\frac{l}{A}[/tex]

ρ is the resistivity.

The unit of resistance is ohm (Ω).

The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m

The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m

For copper:

[tex]A=\pi r_1^2 =\pi (\frac{d_1}{2} )^2[/tex]

[tex]R_1=\rho_1\frac{l_1}{\pi(\frac{d_1}{2})^2 }[/tex]

[tex]\Rightarrow (\frac{d_1}{2})^2=\rho_1\frac{l_1}{\pi R_1 }[/tex]......(1)

Again for tungsten:

[tex]R_2=\rho_2\frac{l_2}{\pi(\frac{d_2}{2})^2 }[/tex]

[tex]\Rightarrow (\frac{d_2}{2})^2=\rho_2\frac{l_2}{\pi R_2 }[/tex]........(2)

Given that [tex]R_1=R_2[/tex]   and    [tex]l_1=l_2[/tex]

Dividing the equation (1) and (2)

[tex]\Rightarrow\frac{ (\frac{d_1}{2})^2}{ (\frac{d_2}{2})^2}=\frac{\rho_1\frac{l_1}{\pi R_1 }}{\rho_2\frac{l_2}{\pi R_2 }}[/tex]

[tex]\Rightarrow( \frac{d_1}{d_2} )^2=\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}[/tex]   [since [tex]R_1=R_2[/tex]   and    [tex]l_1=l_2[/tex]]

[tex]\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}}[/tex]

[tex]\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{3}{10}}[/tex]

[tex]\Rightarrow d_1:d_2=\sqrt{3} :\sqrt{10}[/tex]

Therefore the ratio of diameter of the copper to that of the tungsten is

[tex]\sqrt{3} :\sqrt{10}[/tex]