On a number line, the directed line segment from Q to S has endpoints Q at –14 and S at 2. Point R partitions the directed line segment from Q to S in a 3:5 ratio.


Which expression correctly uses the formula (StartFraction m Over m + n EndFraction) (x 2 minus x 1) + x 1 to find the location of point R?


(StartFraction 3 Over 3 + 5 EndFraction) (2 minus (negative 14)) + (negative 14)

(StartFraction 3 Over 3 + 5 EndFraction) (negative 14 minus 2) + 2

(StartFraction 3 Over 3 + 5 EndFraction) (2 minus 14) + 14

StartFraction 3 Over 3 + 5 EndFraction (negative 14 minus 2) minus 2

Respuesta :

Option A: [tex]\frac{3}{3+5} (2-(-14))+(-14)[/tex] is the expression that correctly uses the formula [tex]\frac{m}{m+n} (x_2-x_1)+x_1[/tex]

Explanation:

It is given that, the number line segment from Q to S has endpoints Q at –14 and S at 2.

Point R partitions the directed line segment from Q to S in a 3:5 ratio.

Thus, we have,

[tex]x_1=-14[/tex] , [tex]x_2=2[/tex] , [tex]m=3[/tex] and [tex]n=5[/tex]

The location of point R can be determined using the formula,

[tex]\frac{m}{m+n} (x_2-x_1)+x_1[/tex]

Substituting the values, we get,

[tex]\frac{3}{3+5} (2-(-14))+(-14)[/tex]

Hence, substituting the values [tex]x_1=-14[/tex] , [tex]x_2=2[/tex] , [tex]m=3[/tex] and [tex]n=5[/tex] in the formula [tex]\frac{m}{m+n} (x_2-x_1)+x_1[/tex], we get, [tex]\frac{3}{3+5} (2-(-14))+(-14)[/tex]

Thus, the expression that correctly uses the formula is [tex]\frac{3}{3+5} (2-(-14))+(-14)[/tex]

Therefore, Option A is the correct answer.

Answer:

A

Step-by-step explanation:

I just took the test