Answer:
Perimeter of one of the triangle= [tex]17.071 inch[/tex]
Step-by-step explanation:
The triangle has:
[tex]Perpendicular= 5 inch\\Base = 5 inch \\Diagonal(Hypotenuse)=?[/tex]
Using the Pythagorean Theorem;
[tex]( Hypotenuse)^2=(Perpendicular)^2+(Base)^2\\H^2= 5^2+5^2\\H^2=25+25\\H^2=50\\[/tex]
[tex]H=\sqrt{50}\\or\\H=7.071 inches[/tex]
The Perimeter of one of the triangle is =
[tex]Perpendicular+Base+Hypotenuse\\5+5+7.071\\17.071inch[/tex]
This is equal for the other triangle.