Respuesta :

Answer:

Diagonal of rhombus bisect the angles of it.

Step-by-step explanation:

Given: WXYZ is a rhombus.

To prove: WY bisects Angle ZWX and Angle XYZ.  ZX bisects Angle WZY and Angle YXW.

In rhombus WXYZ, WY is a diagonal.

In triangle WXY and triangle WZY,

[tex]WX=WZ[/tex]        (sides of rhombus are equal)

[tex]XY=ZY[/tex]        (sides of rhombus are equal)

[tex]WY=WY[/tex]       (Common side)

By SSS postulate,

[tex]\triangle WXY\cong \triangle WZY[/tex]

[tex]\angle WYX\cong \angle WYZ[/tex]       (CPCTC)

[tex]\angle XWY\cong \angle ZWY[/tex]       (CPCTC)

Hence prove, that WY bisects Angle ZWX and Angle XYZ.

Similarly,

In rhombus WXYZ, ZX is a diagonal.

In triangle WXZ and triangle YXZ,

[tex]WX=YX[/tex]        (sides of rhombus are equal)

[tex]XZ=XZ[/tex]         (Common side)

[tex]WZ=YZ[/tex]        (sides of rhombus are equal)

By SSS postulate,

[tex]\triangle WXZ\cong \triangle YXZ[/tex]

[tex]\angle WZX\cong \angle YZX[/tex]       (CPCTC)

[tex]\angle WXZ\cong \angle YXZ[/tex]       (CPCTC)

Hence prove, that ZX bisects Angle WZY and Angle YXW.

Ver imagen erinna