Respuesta :
Answer:
model winstP3_9_6 "P r oduc ti on P r o c e s s ( Daisy Drug ) ";
set
drug :=[ 1..2];
chemical :=[ 1..2];
process :=[ 1..2];
parameter
PercentReq{drug, chemical} := [0.65, 0, 0, 0.55];
Price{drug} := [6, 4];
LaborUse{process} := [2, 3];
RawMatUse{process} := [3, 2];
ChemicalYield{process, chemical} := [3, 3, 3, 1];
LaborAvail := 120;
RawMatAvail := 100;
variable
RunProcess,R{process};
Blend,B{chemical,drug};
constraint
LaborLimit: sum{process} LaborUse*R <= LaborAvail;
RawMatLimit: sum{process} RawMatUse*R <= RawMatAvail;
ChemBalance{chemical}: sum{process} ChemicalYield*R >= sum{drug} B;
RequireChem{drug,chemical|PercentReq>0}: B >= PercentReq*(sum{
chemical} B);
maximize TotalRevenue: sum{chemical,drug} Price*B;
Writep(TotalRevenue);
end
Step-by-step explanation:
The formulated LP (linear programming) model is shown in the answer section. In order to maximize the revenue sales, it is essential to consider all the necessary factors such as the constraints, variables, production cost, availability of customers and customers' preferences. These factors was used to design the LP model shown above.