At 25°C, gaseous decomposes to and to the extent that 10.3% of the original (by moles) has decomposed to reach equilibrium. The total pressure (at equilibrium) is 1.30 atm. Calculate the value of for this system. =

Respuesta :

The question is incomplete, complete question is :

At 25°C, gaseous [tex]SO_2Cl_2[/tex] decomposes to [tex]SO_2(g)[/tex] and [tex]Cl_2(g)[/tex] to the extent that 10.3% of the original

Answer:

The value of the [tex]K_p[/tex] of the reaction is 0.0139.

Explanation:

The total pressure at equilibrium = P = 1.30 atm.

[tex]SO_2Cl_2(g)\rightleftharpoons SO_2(g) + Cl_2(g)[/tex]

Initially

1 mol              0       0

At equilibrium:

(1 - 0.103)mol     0.103 mol      0.103 mol

Total moles at equilibrium,n = (1-0.103)mol+  0.103 mol + 0.103 mol

n = 1.103 moles

At equilibrium ,mole fraction of [tex]SO_2Cl_2=\chi_1=\frac{(1-0.103) mol}{1.103mol}=0.8132[/tex]

Partial pressure of f [tex]SO_2Cl_2[/tex] equilibrium ;

[tex]p_1=P\times \chi_1[/tex] (Dalton's law of partial pressure)

[tex]p_1=1.30\times 0.8132=1.057 atm[/tex]

At equilibrium ,mole fraction of [tex]SO_2=\chi_2=\frac{(0.103) mol}{1.103mol}=0.09338[/tex]

Partial pressure of f [tex]SO_2[/tex] equilibrium ;

[tex]p_2=P\times \chi_2[/tex] (Dalton's law of partial pressure)

[tex]p_2=1.30\times 0.09338=0.1214 atm[/tex]

At equilibrium ,mole fraction of [tex]Cl_2=\chi_3=\frac{(0.103) mol}{1.103mol}=0.09338[/tex]

Partial pressure of f [tex]Cl_2[/tex] equilibrium ;

[tex]p_3=P\times \chi_3[/tex] (Dalton's law of partial pressure)

[tex]p_3=1.30\times 0.09338=0.1214 atm[/tex]

The value of the [tex]K_p[/tex] of the reaction will be;

[tex]K_p=\frac{p_2\times p_3}{p_1}=\frac{0.1214 atm\times 0.1214 atm}{1.057 atm}=0.0139[/tex]