Respuesta :

Answer:

The equation of circle is [tex](x-6)^{2}[/tex] + [tex](y-2)^{2}[/tex] = 153

Step-by-step explanation:

Given the endpoints of a diameter of a circle: (9,14) and (3,-10)

We know that the equation of a circle is

[tex](x-h)^{2}[/tex] + [tex](y-k)^{2}[/tex] = [tex]r^{2}[/tex]

where (x,y) is any point on the circle, (h,k) is center of the circle and r is radius of circle.

To find (h,k): the center is midpoint of diameter

Midpoint of diameter with end points (x1,y1) and (x2,y2) is given by

(  [tex]\frac{x1+x2}{2}[/tex] , [tex]\frac{y1+y2}{2}[/tex]  )

(  [tex]\frac{9+3}{2}[/tex] , [tex]\frac{14-10}{2}[/tex]  )

(6,2)

Hence (h,k) is (6,2)

Substituting values of (h.k) and (x.y) as (6,2) and (9,14) respectively in equation of circle, we get

[tex](9-6)^{2}[/tex] + [tex](14-2)^{2}[/tex] = [tex]r^{2}[/tex]

[tex]r^{2}[/tex] = 153

Substituting the values of (h,K) and  [tex]r^{2}[/tex], we get the equation of circle as

[tex](x-6)^{2}[/tex] + [tex](y-2)^{2}[/tex] = 153

Hence the equation of circle is [tex](x-6)^{2}[/tex] + [tex](y-2)^{2}[/tex] = 153