Helppppppppppp!!!!c;;

For this case we have that, according to the map, [tex]\frac {1} {4} \ in[/tex] is equivalent to [tex]6 \ mi.[/tex]
So, we propose a rule of three to find the equivalent of [tex]19 \ in[/tex] (distance between cities)
[tex]\frac {1} {4} \ in[/tex] ------------>[tex]6 \ mi[/tex]
[tex]19 \ in[/tex] -----------------------> x
Where the variable "x" represents the equivalent of [tex]19 \ in[/tex]
[tex]x = \frac {19 * 6} {\frac {1} {4}}\\x = \frac {114} {\frac {1} {4}}\\x = 114 * 4\\x = 456[/tex]
Thus, the cities on the map are separated by [tex]456 \ mi[/tex]
Answer:
[tex]456 \ mi[/tex]