Answer:
The result of the division is [tex]\frac{10x}{z}[/tex] and the restrictions are x ≠ 0, y ≠ 0, and z ≠ 0.
Step-by-step explanation:
We have to divide the following:
[tex]\frac{35y}{18z}\div \frac{7y}{36x}[/tex] where z ≠ 0 and x ≠ 0.
Now, [tex]\frac{35y}{18z}\div \frac{7y}{36x} = \frac{35y}{18z} \times \frac{36x}{7y}[/tex] , where y ≠ 0
= [tex](\frac{35y}{7y})\times (\frac{36x}{18z})[/tex]
= [tex]5 \times \frac{2x}{z}[/tex]
= [tex]\frac{10x}{z}[/tex]
Therefore, the result of the division is [tex]\frac{10x}{z}[/tex] and the restrictions are x ≠ 0, y ≠ 0, and z ≠ 0. (Answer)