Respuesta :

Answer:

Part 7) [tex]arc\ AB=60^o[/tex]

Part 8) [tex]arc\ BAC=240^o[/tex]

Part 9) [tex]arc\ BC=120^o[/tex]

Part 10) [tex]arc\ EA=92^o[/tex]

Part 11) [tex]arc\ ECA=268^o[/tex]

Step-by-step explanation:

Part 7) Find the measure of arc AB

we know that

Central angle is the angle that has its vertex in the center of the circumference and the sides are radii of it

[tex]arc\ AB=60^o[/tex] ----> by central angle

Part 8) Find the measure of arc BAC

we know that

[tex]arc\ BAC=arc\ AB+arc\ AC[/tex]

we have that

The segment AC is a diameter

The diameter divide the circle into two equal parts

so

[tex]arc\ AC=180^o[/tex]

and

[tex]arc\ AB=60^o[/tex]

substitute

[tex]arc\ BAC=60^o+180^o=240^o[/tex]

Part 9) Find the measure of arc BC

we know that

The sum of the minor arc plus  the major arc is equal to 360 degrees

so

[tex]arc\ BC+arc\ BAC=360^o[/tex]

we have

[tex]arc\ BAC=240^o[/tex] ----> major arc

[tex]arc\ BC[/tex] ----> minor arc

substitute the given value

[tex]arc\ BC+240^o=360^o[/tex]

[tex]arc\ BC=360^o-240^o=120^o[/tex]

Part 10) Find the measure of arc EA

we know that

The measure of arc EA is equal to

[tex]arc\ EA=arc\ EB+arc\ BA[/tex] ----> by addition angles theorem

we have

[tex]arc\ EB=32^o[/tex] ---> by central angle

[tex]arc\ BA=60^o[/tex] ---> by central angle

[tex]arc\ EA=32^o+60^o=92^o[/tex]

Part 11) Find the measure of arc ECA

we know that

The sum of the minor arc plus  the major arc is equal to 360 degrees

so

[tex]arc\ ECA+arc\ EA=360^o[/tex]

we have

[tex]arc\ EA=92^o[/tex] ----> minor arc

[tex]arc\ ECA[/tex] ----> major arc

substitute the given value

[tex]arc\ ECA+92^o=360^o[/tex]

[tex]arc\ ECA=360^o-92^o=268^o[/tex]