Answer:
f(2)=5
f(5)=33
Step-by-step explanation:
The given formula, that recursively defines the sequence is
[tex]f(1) = 3 \\ f(n + 1) = 2f(n) - 1[/tex]
When n=1, we obtain;
[tex]f(1+ 1) = 2f(1) - 1 \\ f(2) = 2 \times 3 - 1 \\ f(2) = 6 - 1 \\ f(2) = 5[/tex]
When n=2, we get:
[tex]f(2+ 1) = 2f(2) - 1 \\ f(3) = 2 \times 5 - 1 \\ f(3) = 10 - 1 \\ f(3) = 9[/tex]
When n=3,
[tex]f(3 + 1) = 2f(3) - 1 \\ f(4) = 2f(3) - 1 \\ f(4) = 2 \times 9 - 1 \\ f(4) = 18 - 1 \\ f(4) = 17[/tex]
When n=4
[tex]f(4 + 1) = 2 f(4) - 1 \\ f(5) = 2 \times 17 - 1 \\ f(5) = 34 - 1 \\ f(5) = 33[/tex]
When n=5,
[tex]f(6) = 65[/tex]