Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL congruent to (triangle)QNP?

Answer:
Yes they are
Step-by-step explanation:
In the triangle JKL, the sides can be calculated as following:
=> JK = [tex]\sqrt{(1-2)^{2} + (1-5)^{2} } = \sqrt{(-1)^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}[/tex]
=> JL = [tex]\sqrt{(5-2)^{2} + (2-5)^{2} } = \sqrt{3^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}[/tex]
=> KL = [tex]\sqrt{(5-1)^{2} + (2-1)^{2} } = \sqrt{4^{2}+1^{2} } = \sqrt{1+16}=\sqrt{17}[/tex]
In the triangle QNP, the sides can be calculate as following:
=> QN = [tex]\sqrt{[-3-(-4)]^{2} + (0-4)^{2} } = \sqrt{1^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}[/tex]
=> QP = [tex]\sqrt{[-7-(-4)]^{2} + (1-4)^{2} } = \sqrt{(-3)^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}[/tex]
=> NP = [tex]\sqrt{[-7-(-3)]^{2} + (1-0)^{2} } = \sqrt{(-4)^{2}+1^{2} } = \sqrt{16+1}=\sqrt{17}[/tex]
It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP
=> They are congruent triangles