Which of the following describes graphing y ≥ |x| - 4? Translate y = |x| down 4 units and shade inside the V. Translate y = |x| up 4 units and shade inside the V. Translate y = |x| left 4 units and shade inside the V. Translate y = |x| right 4 units and shade inside the V.

Respuesta :

Answer:

Translate y = |x| down 4 units and shade inside the V.

Step-by-step explanation:

We want to graph the inequality

[tex]y \geqslant |x| - 4[/tex]

We first need to graph the corresponding absolute value equation.

[tex]y = |x| - 4[/tex]

We graph the parent absolute value function,

[tex]y = |x| [/tex]

and shift 4 units down.

We then test the origin:

[tex]0 \geqslant |0| - 4 \\ 0 \geqslant - 4[/tex]

This is true.

Therefore we shade inside the V shape.