How many times large is the approximate radius of a mercury atom 1.50 X 10 to the power of negative 3 as the approximate radius of a hydrogen atom, 2.5X10 to the power of negative 11 meter?

Respuesta :

Answer:

60,000,000 times larger.

Step-by-step explanation:

Given:

Radius of a mercury atom = [tex]1.50\times10^{-3}[/tex]

Radius of a hydrogen atom = [tex]2.5\times10^{-11}[/tex]

We have to find that how many times the radius of a mercury atom larger than the radius of a hydrogen atom is.

Solution:

To find that how many times the radius of a mercury atom larger than the radius of a hydrogen atom is, we will simply divide:

[tex]\frac{Radius\ of\ a\ mercury\ atom}{ Radius\ of\ a\ hydrogen\ atom,}[/tex]

[tex]\frac{1.5\times10^{-3} }{2.5\times10^{-11} }[/tex]

[tex]0.6\times10^{-3-(-11)} :As\ we \ know, \frac{a^{m} }{a^{n} } =a^{m-n}[/tex]

[tex]0.6\times10^{-3+11} \\\\ 0.6\times10^{8}\\\\ 0.6\times10\times10\times10\times10\times10\times10\times10\times10\\ 60000000\ times[/tex]

Thus,  radius of a mercury atom is 60,000,000 times larger than radius of a hydrogen atom.