A solid right circular cone of diameter 14cm and height 8cm is melted to form a hollow sphere. If the external diameter of the sphere is 10 cm,find the internal diameter of the sphere.

Respuesta :

Answer:

The internal diameter of the sphere is 6 cm.

Step-by-step explanation:

Given that, a solid right circular cone of diameter 14 cm and height 8 cm.

The radius of the cone is [tex]=\frac{diameter}{2}[/tex]

                                         [tex]=\frac{14}{2} \ cm[/tex]

                                        = 7 cm.

The volume of the cone is [tex]= \frac13 \pi r^2 h[/tex]

                                           [tex]=(\frac1 3\times \pi \times 7^2\times 8) \ cm^3[/tex]

                                           [tex]=\frac{392}{3}\pi \ cm^3[/tex]

Let the internal radius of the sphere be r.

The external diameter of the sphere is = 10 cm

The external radius of the sphere is(R) = 5 cm

The volume of the sphere is [tex]= \frac43 \pi(R^3-r^3)[/tex]

                                                [tex]=\frac43 \pi (5^3-r^3) \ cm^3[/tex]

The sphere is formed by the solid right circular cone.

∴The volume of the sphere = The volume of the cone

According to the problem,

[tex]\frac43 \pi (5^3-r^3) =\frac{392}{3}\pi[/tex]

[tex]\Rightarrow 4(5^3-r^3)= 392[/tex]

[tex]\Rightarrow 5^3-r^3=\frac{392}{4}[/tex]

[tex]\Rightarrow 5^3-r^3=98[/tex]

[tex]\Rightarrow -r^3=98-125[/tex]

[tex]\Rightarrow-r^3= -27[/tex]

⇒r= 3

The internal radius of the sphere is = 3 cm.

The internal diameter of the given sphere is = (2×3) cm =6 cm.