contestada

Given the information below, write the equation in Standard Form.

Hyperbola:

Vertices (-4, 5), (4, 5)
Foci (-6, 5), (6, 5)

Respuesta :

Answer:

The standard form of the equation of a hyperbola is  [tex]\frac{x^{2}}{16}-\frac{(y-5)^{2}}{20}=1[/tex]

Step-by-step explanation:

The standard form of the equation of a hyperbola with center (h , k) is  [tex]\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1[/tex] , where

  • The coordinates of the vertices are (h ± a , k)
  • The coordinates of the foci are (h ± c , k), where c² = a² + b²

∵ The vertices of the hyperbola are (-4 , 5) and (4 , 5)

k = 5

∴ h + a = 4 ⇒ (1)

∴ h - a = -4 ⇒ (2)

- Add (1) and (2)

∴ 2h = 0

- Divide both sides by 2

h = 0

- Substitute the value of h in (1) or (2) to find a

∵ 0 + a = 4

a = 4

∵ The foci of the hyperbola are (-6 , 5) and (6 , 5)

∴ k = 5

∴ h + c = 6 ⇒ (1)

∴ h - c = -6 ⇒ (2)

- Add (1) and (2)

∴ 2h = 0

- Divide both sides by 2

∴ h = 0

- Substitute the value of h in (1) or (2) to find c

∵ 0 + c = 6

c = 6

Let us use the rule c² = a² + b²

∵ (6)² = (4)² + b²

∴ 36 = 16 + b²

- Subtract 16 from both sides

20 = b²

∵ The standard form of the equation of a hyperbola is  [tex]\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1[/tex]

- Substitute the values of h, k, a and b in the equation

∴ [tex]\frac{(x-0)^{2}}{16}-\frac{(y-5)^{2}}{20}=1[/tex]

∴ [tex]\frac{x^{2}}{16}-\frac{(y-5)^{2}}{20}=1[/tex]

The standard form of the equation of a hyperbola is  [tex]\frac{x^{2}}{16}-\frac{(y-5)^{2}}{20}=1[/tex]