Respuesta :

Option D:

[tex]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{cc}0.5 & -3 \\0 & 1\end{array}\right]\left[\begin{array}{c}2 \\-3\end{array}\right][/tex]

Solution:

Given equation:

[tex]\left[\begin{array}{ll}2 & 6 \\0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\-3\end{array}\right][/tex]

where

[tex]A=\left[\begin{array}{ll}2 & 6 \\0 & 1\end{array}\right][/tex] ,   [tex]X=\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right][/tex],   [tex]B =\left[\begin{array}{l}2 \\-3\end{array}\right][/tex]

This is in the form of AX = B.

To solve this equation.

Multiply by [tex]A^{-1}[/tex] on both sides.

[tex]A^{-1}AX=A^{-1}B[/tex]

[tex]X=A^{-1} B[/tex]

To find [tex]A^{-1}[/tex] using matrix formula:

[tex]$\left[\begin{array}{ll}a & b \\c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\-c & a\end{array}\right][/tex]

[tex]$\left[\begin{array}{ll}2 & 6 \\0 & 1\end{array}\right]^{-1}=\frac{1}{2\times1- 6\times0}\left[\begin{array}{cc}1 & -6 \\0 & 2\end{array}\right][/tex]

                 [tex]$=\frac{1}{2}\left[\begin{array}{cc}1 & -6 \\0 & 2\end{array}\right][/tex]

Multiply [tex]\frac{1}{2}[/tex] into inside the matrix.

                 [tex]$=\left[\begin{array}{cc}\frac{1}{2} & \frac{-6}{2} \\\frac{0}{2} & \frac{2}{2} \end{array}\right][/tex]

                 [tex]=\left[\begin{array}{cc}0.5 & -3 \\0 & 1\end{array}\right][/tex]

Substitute into [tex]X=A^{-1} B[/tex], we get

[tex]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{cc}0.5 & -3 \\0 & 1\end{array}\right]\left[\begin{array}{c}2 \\-3\end{array}\right][/tex]

This equation can be used to solve the given matrix.

Option D is the correct answer.