The radioactive isotope of lead, Pb-209, decays at a rate proportional to the amount present at time t and has a half-life of 3.3 hours. If 1 gram of this isotope is present initially, how long will it take for 80% of the lead to decay

Respuesta :

Answer:

Therefore it will take 7.66 hours for 80% of the lead decay.

Explanation:

The differential equation for decay is

[tex]\frac{dA}{dt}= kA[/tex]

[tex]\Rightarrow \frac{dA}{A}=kdt[/tex]

Integrating both sides

ln A= kt+c₁

[tex]\Rightarrow A= e^{kt+c_1}[/tex]

[tex]\Rightarrow A=Ce^{kt}[/tex]         [[tex]e^{c_1}=C[/tex]]

The initial condition is A(0)= A₀,

[tex]\therefore A_0=Ce^{0.k}[/tex]

[tex]\Rightarrow C=A_0[/tex]

[tex]\therefore A=A_0e^{kt}[/tex].........(1)

Given that the [tex]Pb_{209}[/tex]  has half life of 3.3 hours.

For half life [tex]A=\frac12 A_0[/tex] putting this in equation (1)

[tex]\frac12A_0=A_0e^{k\times3.3}[/tex]

[tex]\Rightarrow ln(\frac12)= 3.3k[/tex]     [taking ln both sides, [tex]ln \ e^a=a[/tex]]

[tex]\Rightarrow k=\frac{ln \frac12}{3.3}[/tex]

⇒k= - 0.21

Now A₀= 1 gram, 80%=0.8

and A= (1-0.8)A₀ = (0.2×1) gram = 0.2 gram

Now putting the value of k,A and A₀in the equation (1)

[tex]\therefore 0.2=1e^{(-0.21)\times t}[/tex]

[tex]\Rightarrow e^{-0.21t}=0.2[/tex]

[tex]\Rightarrow -0.21t= ln(0. 2)[/tex]

[tex]\Rightarrow t= \frac{ln (0.2)}{-0.21}[/tex]

⇒ t≈7.66

Therefore it will take 7.66 hours for 80% of the lead decay.