Respuesta :
Answer:
[tex]CD=2\\\\BD=8[/tex]
Step-by-step explanation:
[tex]A (4, 7)[/tex], [tex]B (6, 7)[/tex], [tex]C (4, -1)[/tex], and [tex]D (6, -1)[/tex]
Using Distance formula:
CD:
[tex]\sqrt{(6-4)^2+(-1-(-1))^2} \\\\=\sqrt{(6-4)^2+(-1+1)^2} \\\\=\sqrt{2^2+0}\\\\=\sqrt{4}\\\\ =2[/tex]
BD:
[tex]\sqrt{(6-6)^2+(-1-7)^2} \\\\=\sqrt{0+(-8)^2}\\\\=\sqrt{64} \\\\=8[/tex]
[tex]CD=2\\\\BD=8[/tex]